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Spectrum

The spectrum σ(T ) of a bounded linear operator T acting on a
Hilbert space H is the set of complex numbers λ such that λI − T
does not have an inverse that is a bounded linear operator.

If H = Cn, T can be viewed as a matrix


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · ·
...

an1 an2 · · · ann


and so its spectrum consists of eigenvalues of the matrix. But if H
is an infinite dimensional Hilbert space, the spectrum of its
bounded operator T may have more numbers than its eigenvalues
σp(T ).



Essential Spectrum

The essential spectrum of T , usually denoted σe(T ), is the set of
all complex numbers λ such that λ I − T is not a Fredholm
operator.

Here, an operator is Fredholm if its range is closed and its kernel
and cokernel are finite-dimensional.

σe(T ) = {λ ∈ C : [λ I − T ] is not invertible in C(H).}

Calkin algebra C(H) = B(H)/K (H)
B(H): the algebra of bounded linear operators on H.
K (H): the ideal of compact operators on H.
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Fredholm Index and Spectral Picture

If λ is not in σe(T ), T − λI is Freholm. The Fredholm index is
defined by

ind(T − λI ) = dim Ker(T − λI )− dim Ker(T − λI )∗.

Carl Pearcy, Some Recent developments in Operator theory, CBMS
36, 1975.

Theorem

Let Ω be a connected component of C\σe(T ) such that
ind(T − λI ) = 0 for each λ ∈ Ω. Then one of the following holds:
(a) Ω ∩ σ(T ) is empty.
(b) Ω ⊂ σ(T ).
(c) Ω ∩ σ(T ) is a countable set of isolated eigenvalues of T , each
having finite multiplicity.
Furthermore the intersection of σ(T ) with the unbounded
component of C\σe(T ) is a countable set of isolated eigenvalues
of T , each of which has finite multiplicity.
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Toeplitz Operators on the Hardy space

A Toeplitz operator on the Hardy space is the compression of a
multiplication operator on the circle to the Hardy space

Let ∂D be the circle, with the standard Lebesgue measure, and
L2(∂D) be the Hilbert space of square-integrable functions. A
bounded measurable function φ on ∂D defines a multiplication
operator Mφ on L2(∂D). Let P be the projection from L2(∂D)
onto the Hardy space H2. The Toeplitz operator with symbol φ is
defined by

Tφ = PMφ|H2
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Toeplitz matrix

A bounded operator on H2 is Toeplitz if and only if its matrix
representation, in the basis {zn}∞0 , has constant diagonals:


a0 a−1 a−2 a−3 · · · · · ·
a1 a0 a−1 a−2 · · · · · ·
a2 a1 a0 a−1 · · · · · ·
...

. . .
. . .

. . .
. . .

...









Bergman space

Let dA denote Lebesgue area measure on the unit disk D,
normalized so that the measure of D equals 1. The Bergman space
L2
a is the Hilbert space consisting of the analytic functions on D

that are also in L2(D, dA):

f (z) =
∞∑
n=0

anzn,

and
∞∑
n=0

|an|2

n + 1
<∞.

Let en =
√

n + 1zn. Then {en}∞0 form an orthonormal basis of the
Bergman space L2

a.



Bergman space

Let dA denote Lebesgue area measure on the unit disk D,
normalized so that the measure of D equals 1. The Bergman space
L2
a is the Hilbert space consisting of the analytic functions on D

that are also in L2(D, dA):

f (z) =
∞∑
n=0

anzn,

and
∞∑
n=0

|an|2

n + 1
<∞.

Let en =
√

n + 1zn. Then {en}∞0 form an orthonormal basis of the
Bergman space L2

a.



Bergman space

Let dA denote Lebesgue area measure on the unit disk D,
normalized so that the measure of D equals 1. The Bergman space
L2
a is the Hilbert space consisting of the analytic functions on D

that are also in L2(D, dA):

f (z) =
∞∑
n=0

anzn,

and
∞∑
n=0

|an|2

n + 1
<∞.

Let en =
√

n + 1zn. Then {en}∞0 form an orthonormal basis of the
Bergman space L2

a.



Toeplitz Operators

For φ ∈ L∞(D, dA) where dA is normalized area measure on D, the
Toeplitz operator Tφ with symbol φ is the operator on L2

a defined
by

Tφf = P(φf );

here P is the orthogonal projection from L2(D, dA) onto L2
a. Note

that if φ ∈ H∞ (the set of bounded analytic functions on ∂D),
then Tφ is just the operator of multiplication by φ on L2

a.
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matrix representation

Let en =
√

n + 1zn and φ(z) =
∑−1

j=−∞ aj z̄
|j | +

∑∞
j=0 ajz

j .

〈Tφei , ej〉 =
√

i + 1
√

j + 1aj−i 〈z j , z j〉 = aj−i

√
i + 1

j + 1
.

On the basis {en}, the matrix representation of the Toeplitz
operator Tφ on the Bergman space is given by

a0

√
2
1 a−1

√
3
1 a−2

√
4
1 a−3 · · · · · ·√

1
2 a1 a0

√
3
2 a−1

√
4
2 a−2 · · · · · ·√

1
3 a2

√
2
3 a1 a0

√
4
3 a−1 · · · · · ·

...
. . .

. . .
. . .

. . .
...

 .



Some algebraic properties

(a) Tαφ+βψ = αTφ + βTψ.

(b) If φ is in H∞, then

TψTφ = Tψφ.

(c) If ψ is in H∞, then

TψTφ = Tψφ.

(d) T ∗φ = Tφ.

(e) If φ ≥ 0, then Tφ ≥ 0.



Fredholm index for Toeplitz operator

If φ is continuous on the unit circle ∂D and does not vanish on
∂D, then Tφ is Fredholm and

ind(Tφ) = n(φ(∂D), 0).

For a closed curve γ in the complex plane C and a ∈ C\γ , define
the winding number of the curve γ with respect to a to be

n(γ, a) =
1

2πi

∫
γ

dz

z − a
.
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Bergman shift

On the basis {en =
√

n + 1zn}, the Toeplitz operator Tz with
symbol z is a weighted shift operator, called the Bergman shift:

Tzen =

√
n + 1

n + 2
en+1,

and hence Tz̄ is a backward weighted shift:

Tz̄en =

{
0 n = 0√

n
n+1 en−1. n > 0

(1)

The matrix representation of the Toeplitz operators
T1−|z|2 = I − T ∗z Tz is given by

1
2 0 0 0 · · · · · ·
0 1

3 0 0 · · · · · ·
0 0 1

4 0 · · · · · ·
...

. . .
. . .

. . .
. . .

...





Differences between H2 and L2
a

Theorem (Coburn Theorem)

If Tφ 6= 0 on the Hardy space, either kerTφ = {0} or kerT ∗φ = {0}.

Question

Does Coburn theorem hold on the Bergman space?

No! On the Bergman space, both kerT1−|z|2− 1
2

and kerT ∗
1−|z|2− 1

2

contain the function 1.

But 1− |z |2 − 1
2 is not harmonic in the unit disk and T1−|z|2 is

compact!

Question

Does Coburn theorem hold on the Bergman space for Tφ even if φ
is harmonic on the unit disk?

No!
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Widom Theorem and Douglas Theorem

Theorem (Widom Theorem)

The spectrum σ(Tφ) of a Toeplitz operator on the Hardy space is
connected.

This was conjectured by Halmos.

Theorem (Douglas Theorem)

The essential spectrum σe(Tφ) of a Toeplitz operator on the Hardy
space is also connected.
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Compact Toeplitz Operators

The matrix representation of the Toeplitz operators
T1−|z|2 = I − T ∗z Tz is given by

1
2 0 0 0 · · · · · ·
0 1

3 0 0 · · · · · ·
0 0 1

4 0 · · · · · ·
...

. . .
. . .

. . .
. . .

...



T1−|z|2 is compact with the spectrum {1
2 ,

1
3 , · · · } ∪ {0}. Hence

σ(T1−|z|2) is disconnected.

But 1− |z |2 is not harmonic on the
unit disk.
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Compact Toeplitz operators on the Hardy
space and the Bergman space

Theorem

On the Hardy space, Tφ is compact if and only if φ = 0.

Theorem (Axler-Zheng)

For φ ∈ L∞(D), Tφ is compact on the Hardy space if and only if

lim
|z|→1

∫
D
φ(w)

(1− |z |2)2

|1− z̄w |4
dA(w) = 0.

If φ is harmonic on the unit disk, then

lim
|z|→1

∫
D
φ(w)

(1− |z |2)2

|1− z̄w |4
dA(w) = 0

implies that φ = 0 on ∂D and hence φ = 0 on the unit disk.
There is no nontrivial compact Toeplitz operator with bounded
harmonic symbol on the Bergman space.
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Revised Questions

Question

Is the spectrum σ(Tφ) of a Toeplitz operator on the Bergman
space connected if φ is bounded and harmonic on the unit disk?

Sundberg’s conjecture: Yes! (Problem 7.10 in V.P. Havin and
N.K. Nikolski (Eds), Linear and Complex Analysis Problem Book 3,
Lecture notes in Mathematics 1573, 1994).
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Supports for Sundberg’s conjecture

Let φ be in H∞(D).

If λ is not in the closure of φ(D), then 1
φ−λ is in H∞(D) and

Tφ−λT(φ−λ)−1 = T(φ−λ)−1Tφ−λ = I .

If λ = φ(a) for some a ∈ D, then

T ∗φ−λka = 0.

Hence
(a) If φ is analytic on the unit disk, then

σ(Tφ) = closφ(D).
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Supports for Sundberg’s conjecture

(b) If φ is real and harmonic on the unit disk, then

σ(Tφ) = [inf φ, supφ].

(c) If φ is harmonic and has piecewise continuous boundary values,
then σe(Tφ) consists of the path formed boundary values of φ by
joining the one-sided limits at discontinuities by straight line
segments and hence σe(Tφ) is connected.

(b) and (c) are contained in (G. McDonald and C. Sundberg,
Indiana Univ. Math. J. 28 (1979)).



Supports for Sundberg’s conjecture

(b) If φ is real and harmonic on the unit disk, then

σ(Tφ) = [inf φ, supφ].

(c) If φ is harmonic and has piecewise continuous boundary values,
then σe(Tφ) consists of the path formed boundary values of φ by
joining the one-sided limits at discontinuities by straight line
segments and hence σe(Tφ) is connected.

(b) and (c) are contained in (G. McDonald and C. Sundberg,
Indiana Univ. Math. J. 28 (1979)).



Supports for Sundberg’s conjecture

(b) If φ is real and harmonic on the unit disk, then

σ(Tφ) = [inf φ, supφ].

(c) If φ is harmonic and has piecewise continuous boundary values,
then σe(Tφ) consists of the path formed boundary values of φ by
joining the one-sided limits at discontinuities by straight line
segments and hence σe(Tφ) is connected.

(b) and (c) are contained in (G. McDonald and C. Sundberg,
Indiana Univ. Math. J. 28 (1979)).



harmonic function h(z) = z̄ + φ(z)

We hope to construct φ having the following properties:

(a) φ(z) is a rational function with poles outside of the closure of
the unit disk.

(b) h(z) is continuous on the closure of the unit disk.

(c) σe(Th) = h(∂D).

(d) 0 is an isolated eigenvalue of Th.
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Eigenvectors of Th for the eigenvalue 0

Let f be an eigenvector for Th for the eigenvalue 0. Then

0 = Thf (z)

= Tz̄ f (z) + Tφ(z)f (z)

=
1

z2

∫ z

0
wf ′(w)dw + φ(z)f (z).

Lemma

For f in the Bergman space L2
a,

Tz̄ f (z) =
1

z2

∫ z

0
wf ′(w)dw . (2)
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1
z2

∫ z

0 wf ′(w)dw + φ(z)f (z) = 0

This is equivalent to the following first order differential equation

(1 + zφ(z))f ′(z) = −(2φ(z) + zφ′(z))f (z). (3)

For a fixed 0 < r < 1, we want
(a) a rational function η(z) with poles outside the closure of the
unit disk such that

2φ(z) + zφ′(z) = (z − r)η(z);

(b) 1 + zφ(z) has a simple zero at z = r and no other zeros in D.
Write

ψ(z) =
1 + zφ(z)

z − r
.

Then ψ is a rational function with poles outside of the closure of
the unit disk.
(3) becomes

f ′(z)

f (z)
= − η(z)

ψ(z)
.
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by
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Since σe(Th) = h(∂D) and

ind(Th) = n(h(∂D), 0),

we want that 0 is an isolated eigenvalue of Th to hope
(c) The winding number

n(h(∂D), 0) = 0.

dim kerTh = dim kerT ∗h .
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Lemma

For each 0 < r < 1, there exists a rational function φ(z) with poles
outside D such that

(a) 2φ(r) + rφ′(r) = 0.

(b) 1 + zφ(z) has a simple zero at z = r and no other zeros in D.

(c) The winding number

n(h(∂D), 0) = 0

where h = z + φ(z).



Sketch of Proof



Disconnected Spectrum

Theorem

Let h(z) = z̄ + φ(z) Then 0 is an eigenvalue of Th and is an
isolated point of σ(Th). Hence σ(Th) is disconnected.

(1) Since h is continuous on the closure of the unit disk, then

σe(Th) = h(∂D).

(2) 0 ∈ σp(Th) ∩ Ω where

Ω = {λ /∈ σe(Th) : ind(Th − λI ) = 0}
= {λ /∈ h(∂D) : n(h(∂D), λ) = 0}.

Sketch of the proof
Want: Ω ∩ σp(Th) is countable.
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λ ∈ Ω ∩ σp(Th), n(h(∂D), λ) = 0

Since 1
z + φ(z) has a simple pole at z = 0 and no other poles in

the unit disk D, the argument principle tells us that if λ is in
Ω ∩ σp(Th), there is a unique point zλ in D such that

1

zλ
+ φ(zλ) = λ.

As λ is an eigenvalue of Th, there is a nonzero function g in the
Bergman space L2

a such that

λg = Thg(z)

= Tz̄g(z) + Tφ(z)g(z)

=
1

z2

∫ z

0
wg ′(w)dw + φ(z)g(z).

We solve the above equation to obtain

g ′(z)

g(z)
= −2(φ(z)− λ) + zφ′(z)

1 + z(φ(z)− λ)
.
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This function has a simple pole at z = zλ with residue

−2(φ(zλ)− λ) + zλφ
′(zλ)

φ(zλ)− λ+ zλφ′(zλ)
= −1− 1

1− z2
λφ
′(zλ)

.

The regularity of g(z) at z = zλ forces this residue to be in
N = {0, 1, 2, 3, · · · , } which leads to

z2
λφ
′(zλ) = 1 +

1

n + 1

for some n ∈ N. This restricts the set

Ω∩σp(Th) ⊂ {λ : λ =
1

zλ
+φ(zλ), z2

λφ
′(zλ) = 1+

1

n + 1
, for some n ∈ N}

to be a countable set. Thus 0 is an isolated point in σ(T ). Hence
we conclude that the spectrum σ(Th) is disconnected.
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Unitary operator Uz

For z ∈ D, let φz be the analytic map of D onto D defined by

φz(w) =
z − w

1− z̄w
. (4)

For z ∈ D, let Uz : L2
a → L2

a be the unitary operator defined by

Uz f = (f ◦ φz)φz
′.

Notice that Uz
∗ = Uz

−1 = Uz , so Uz is actually a self-adjoint
unitary operator.

For S a bounded operator on L2
a, define Sz to be the bounded

operator on L2
a given by conjugation with Uz :

Sz = UzSUz .
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maximal ideal space of H∞

Let M be the maximal ideal space of H∞, i.e., the set of complex
homomorphisms of H∞ with w∗-topology. Then M is a compact
Hausdorff space.

If z is a point in the unit disk D, then point
evaluation at z is a multiplicative linear functional on M. Thus we
can think of z as an element of M and the unit disk D as a subset
of M. Carleson’s corona theorem states that D is dense in M.
Suppose m ∈M and z 7→ αz is a mapping of D into some
topological space E . Suppose also that β ∈ E . The notation

lim
z→m

αz = β

means (as you should expect) that for each open set X in E
containing β, there is an open set Y in M containing m such that
αz ∈ X for all z ∈ Y ∩ D. Note that with this notation z is always
assumed to lie in D.
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Hoffman map

For m ∈M, let φm : D→M denote the Hoffman map. This is
defined by setting

φm(w) = lim
z→m

φz(w)

for w ∈ D; here we are taking a limit in M.

The existence of this
limit, as well as many other deep properties of φm, was proved by
Hoffman (Ann. Math., 103 (1967)).
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Localization Sm of S in Toeplitz algebra

The Toeplitz algebra T is the C ∗-subalgebra of B(L2
a) generated by

{Tg : g ∈ H∞}.

Lemma

If S ∈ T , the Toeplitz algebra and m ∈M, then there exists
Sm ∈ T such that

lim
z→m
‖Sz f − Smf ‖ = 0

for every f in L2
a. If S = Tu1 . . .Tun , where u1, . . . , un ∈ U , then

Sm = Tu1◦φm . . .Tun◦φm .
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Essential spectrum

Using a similar argument as one in the proof of Theorem 10.3 in (
D. Suarez, Indiana Univ. Math. J., 56 (2007)), we have the
following theorem.

Theorem

If S ∈ T , the Toeplitz algebra, then

C\σe(S) = {λ ∈ C : λ /∈
⋃

m∈M\D

σ(Sm) and

sup
m∈M\D

‖(Sm − λI )−1‖ <∞}.



Thin Blaschke product

To a sequence {zn}n in D with
∑∞

n=1(1− |zn|) <∞, there
corresponds a Blaschke product

b(z) =
∞∏
n=1

−zn

|zn|
z − zn

1− znz
, z ∈ D.

A sequence {zn}n and its associated Blaschke product are called
thin if

lim
n→∞

∏
k 6=n

∣∣∣ zn − zk
1− zkzn

∣∣∣ = 1.

Hedenmalm (Proc. Amer. Math. Soc., 99 (1987)) showed that for
each m in M\D, either

b ◦ φm(z) = λm or b ◦ φm(z) ∈ Aut(D)

for some unimodular constant λm. The latter case actually occurs
if m is in the Gleason part of some point in the closure of zeros of
b in D.
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Theorem

Let F be a continuous function on the closure D of the unit disk, b
be an infinite thin Blaschke product and Fb = F ◦ b. Then

σe(TFb
) = σ(TF ).

Proof Let S = TFb
.

For each m in M\D,
Sm = TF◦b◦φm .

By Hedenmalm’s result above, we have that for each m in M\D,
either
(a) b ◦ φm(z) = λm for some unimodular constant λm or
(b) τm = b ◦ φm(z) ∈ Aut(D).
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(a) b ◦ φm(z) = λm

Sm equals the operator F (λm)I and hence σ(Sm) equals one point
F (λm). Thus

σ(Sm) ⊂ F (∂D) ⊂ σ(TF ),

and for each λ not in σ(TF ),

‖(Sm − λI )−1‖ =
1

|F (λm)− λ|

≤ 1

dis(λ, σ(TF ))
.
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(b) τm = b ◦ φm(z) ∈ Aut(D)

Sm = TF◦τm

= VmTFV ∗m

where Vm is the unitary operator on the Bergman space L2
a given by

Vmf (z) = f (τm(z))τ ′m(z).

Thus σ(Sm) = σ(TF ) and for each λ in C\σ(Sm),

‖(Sm − λI )−1‖ = ‖VmT−1
F−λV ∗m‖

= ‖T−1
F−λ‖.
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Disconnected Essential Spectrum

Theorem

Let h be z̄ + φ such that σ(Th) is disconnected. Let b be an
infinite thin Blaschke product and hb = h ◦ b. Then

σe(Thb) = σ(Th)

is disconnected.



Lemma

For each 0 < r < 1, there exists a rational function φ(z) with poles
outside D such that

(a) 2φ(r) + rφ′(r) = 0.

(b) 1 + zφ(z) has a simple zero at z = r and no other zeros in D.

(c) The winding number

n(h(∂D), 0) = 0

where h = z + φ(z).

Proof: For 1√
2
< r < 1, we are going to construct φ by some

conformal mappings.



Proof of Lemma



Proof of Lemma

Let λ be the unimodular constant i 2+i
2−i

√
2

1+i . Define

χ(z) =
1

2r
(

1 + z

1− z
)2,



Let

Ψ(z) = χ(
λz − i

2−i

1 + i
2+i λz

).

Then

Ψ(0) = − i

r
, Ψ(

1√
2

) =
i

r
.



Now define

ψ(z) = −iΨ(
1√
2r

z).

Since r > 1√
2

, the poles of ψ(z) are outside D.
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2r
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Since r > 1√
2

, the poles of ψ(z) are outside D.



Since χ is a conformal map of D onto C\(−∞, 0], ψ is a
conformal map of D onto a region bounded by a simple closed
curve and 0 is outside the region. In particular ψ(∂D) does not
wind around 0 and ψ(z) 6= 0 for all z in D.

Defining

φ(z) =
(z − r)ψ(z)− 1

z
,

we see that (a) and (b) are satisfied:
(a) 2φ(r) + rφ′(r) = 0.

(b) 1 + zφ(z) has a simple zero at z = r and no other zeros in D.



Since χ is a conformal map of D onto C\(−∞, 0], ψ is a
conformal map of D onto a region bounded by a simple closed
curve and 0 is outside the region. In particular ψ(∂D) does not
wind around 0 and ψ(z) 6= 0 for all z in D.
Defining

φ(z) =
(z − r)ψ(z)− 1

z
,

we see that (a) and (b) are satisfied:
(a) 2φ(r) + rφ′(r) = 0.

(b) 1 + zφ(z) has a simple zero at z = r and no other zeros in D.



On ∂D

z + φ(z) =
1

z
+ φ(z)

=
1 + zφ(z)

z

=
z − r

z
ψ(z).

So (c) is satisfied too.



Proof of Tz̄ f (z) = 1
z2

∫ z

0 wf ′(w)dw

Lemma

For f in the Bergman space L2
a,

Tz̄ f (z) =
1

z2

∫ z

0
wf ′(w)dw .

Proof. Note that
{en =

√
n + 1zn}∞n=0

is an orthonormal basis of the Bergman space. To prove this
lemma, we need only verify the above equality for each f (z) = en.
As Tz̄ is the adjoint of the Bergman shift, we have

Tz̄en =

{
0 n = 0√

n
n+1 en−1. n > 0
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On the other hand, since en(w) =
√

n + 1wn, an easy calculation
gives ∫ z

0
we ′n(w)dw =

nzn+1

√
n + 1

Thus we have

1

z2

∫ z

0
we ′n(w)dw =

nzn−1

√
n + 1

=

√
n

n + 1
en−1,

to obtain

Tz̄en =
1

z2

∫ z

0
we ′n(w)dw .

This completes the proof of the lemma.
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